Though it might not garner many headlines, the “copper versus fiber optics” debate is raging within aviation, as industry stakeholders consider the best conduit for quickly transmitting an ever-increasing amount of data to 4K cockpit screens, in-seat IFE, and aircraft health monitoring systems.
With a core that carries light to transmit data, fiber optic cables have a much larger bandwidth than copper wires, and are able to deliver high data rates over long distance. That’s been a draw for some OEMs and integrators. To wit, when Airbus was developing the A350 XWB, your author learned that a 1 Gbps fiber optic cable would directly connect Panasonic Avionics’ IFE head-end server to each seat column in the XWB cabin. At the time, Airbus noted in its catalogue that the cable would be “simple and lightweight with no EMI challenges”, offered a “redundant option” insofar as fiber could connect both ends of each seat column, and that it would offer high speeds and “support for HD video”. So, a certain amount of fiber has been on the proverbial menu for a while.
Another plus is that fiber optic cables are much lighter than copper. But repairing them on in-service aircraft can be cumbersome and costly, to say the very least.
“What we have been hearing in the market is that the number one concern about fiber is if you break a line or if there is any sort of repairability issues. And on the aircraft that can be extremely painful and sometimes not even possible. So, if it’s in a certain area of the aircraft you basically have to pull the entire line out and, you know, reinstall it. Imagine trying to do that with an already installed harness,” says Jeremy Moore, product manager, aerospace fiber optics at W. L. Gore & Associates, which is working to grow its fiber content on aircraft. Little wonder, then, why Airbus was touting redundant cables all those years ago.
No comments:
Post a Comment